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Germany 

(Received 17 August 1994) 

By extending the methods of Part 1, the general problem of steady cylindrical 
supersonic free jet flow is treated in a similar manner to the flow in quasi-cylindrical 
ducts. It is shown that the presence of a finite pressure jump at the nozzle lip gives rise 
to a periodic singularity pattern in the flow field. Basic examples of free jet flows are 
discussed, and for the case of a nearly ideally expanded axisymmetric jet, theoretical 
Mach-Zehnder interferograms are calculated by analytical integration of the density 
field. Excellent agreement with experiment proves the validity of linear theory even 
close to the singularities and far downstream of the nozzle orifice. Furthermore, 
it is shown that Pack's formula for the wavelength of the shock cell structure is 
inconsistent; the correct formula is derived and excellent agreement with Emden's 
empirical fit is found. 

1 Introduction 
Like the problem of supersonic flow in quasi-cylindrical ducts treated in Part 1 

(Dillmann 1994a), the closely related phenomenon of cylindrical supersonic free jet 
flow has considerable practical impact. Important fields of application are found in 
aeroacoustics, where several theoretical models of noise-generating mechanisms are 
based on the jet's internal shock cell structure, and also in high-speed aerodynamics, 
since the interaction between internal jet flow and external pressure field can cause 
considerable aerodynamic interference with aircraft components. However, the present 
situation is quite similar to the case of duct flow: a complete formal solution only 
exists for a single special case, and because of mathematical difficulties, this particular 
solution has not even been completely evaluated yet. 

Based on the fundamental works of Prandtl(l904) and Lord Rayleigh (1916), D.C. 
Pack (1950) was the first to calculate a formal solution for the case of an axisymmetric 
free jet emerging with constant over- or underpressure from a circular nozzle into a 
medium at rest. By superposition of the elementary modes resulting from a separation 
ansatz for the linearized equations of motion, he obtained the solution in the form 
of an infinite Fourier-Bessel series. Ward (1955) investigated the general properties 
of Pack's solution and found that there are periodically distributed discontinuities 
and singularities in the flow field, quite analoguous to those found for duct flow, 
which also make numerical evaluation a formidable problem by causing non-uniform 
convergence of the associated infinite series. Consequently, Pack's solution remained 
practically almost useless for several decades. The situation was partially improved 
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when Grabitz (1975) succeeded in evaluating at least the series associated with the 
density field by applying an analytical comparison method to improve the convergence 
of the corresponding infinite series. In a subsequent paper, Grabitz, Hiller & Meier 
(1979) compared theoretical Mach-Zehnder interferograms obtained by numerical 
integration of the theoretical density field with experimental images. Although the 
spatial resolution of the theoretical interferograms is rather low and the experimental 
images are strongly disturbed by turbulent mixing in the free shear layer, their 
results indicate that linear potential theory may well be adequate to describe the real 
flow field at least in the portions close to the jet orifice. Nevertheless, there is still 
considerable uncertainty about its validity throughout the field. 

Therefore, although the situation appears somewhat better than for duct flow, the 
linearized theory of supersonic free jet flow also lacks completeness. The general 
theory allowing the specification of arbitrary efflux conditions at the nozzle orifice 
is still missing. The only existing formal solution of Pack has not been evaluated 
completely yet, since the method of Grabitz applies only to the density field of this 
special case. Consequently, as has been recently mentioned by Powell (1992), although 
Pack‘s solution is known for several decades, its physical nature still lacks proper 
interpretation. In addition, further experimental evidence about the validity of linear 
theory is highly desirable. 

By extending the methods developed for duct flow in Part 1, the present paper 
intends to fill this gap. In $2, the physical problem is formulated as an initial 
boundary value problem for the wave equation and its general solution, which has 
not been available so far, is derived. The singular behaviour of the solution and its 
physical meaning are investigated in 8 3. By extending Kummer’s series transforma- 
tion to the present problem (and thus generalizing Grabitz’s comparison method), 
the problems associated with non-uniformly converging series, which have prevented 
the unrestricted practical application of linear theory in the past, are completely 
resolved. For a physical interpretation of the resulting flow fields, the asymptotic 
reflection and transmission behaviour of small perturbations is investigated in $ 4. 
Pack‘s classical solution and its most simple three-dimensional counterpart are eval- 
uated and extensively discussed in 0 5. For Pack’s axisymmetric solution, theoretical 
Mach-Zehnder interferograms are calculated in $ 6 by analytical integration of the 
density field and are compared with time-averaged images obtained from experi- 
ment. Finally, the formula for the wavelength of a supersonic free jet is derived and 
compared with experiment, and it is shown that the well-known formula of Pack 
(1950) is wrong, since it is based on an invalid interpretation of the jet’s spatial 
structure. 

2 General theory 
2.1. Mathematical formulation 

In the following, we consider a supersonic jet of gas issuing from a nozzle into a 
resting medium of ambient pressure PO. The pressure difference between the inner 
portions of the jet and the surrounding medium is assumed to be small; thus, any 
shocks occurring in the flow can be assumed to be weak. The nozzle exit cross-section 
is assumed to be circular with radius & (or to deviate only slightly therefrom). 
In consequence of these basic assumptions, the jet contour will be very close to a 
circular cylinder of radius & and thus the flow can be interpreted as a superposition 
of an ideally expanded uniform parallel flow separated from the ambient medium by a 
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cylindrical vortex sheet and small pertubations, which can be assumed to be isentropic 
and irrotational if viscosity and heat conduction are neglected. Consequently, the 
flow is governed by the basic equations of linear potential theory in the same form 
as for duct flow. 

In order to avoid referring to equations of Part 1, these relations are briefly repeated 
in the following. Let wo be the velocity of the ideally expanded parallel flow with Mach 
number MO > 1. Take a system of dimensionless cylindrical polar coordinates (I, cp, c )  
normalized with & and &,(Mi - 1)ll2 in the radial and axial directions respectively, 
such that the [-axis coincides with the jet axis and [ = 0 at the exit cross-section of 
the nozzle. Because of the fundamental assumption of irrotationality, there exists a 
scalar potential 4 ( r ,  cp, 5) of the perturbation velocity vector, which obeys the wave 
equation : 

and which is connected with the velocity components u, v, w in the ( r ,  cp, [)-system via 

Note that so far no assumption has been made about the thermodynamic equation of 
state of the flow medium. By assuming an ideal gas with constant ratio K of the specific 
heats, the thermodynamic variables of state - pressure p, density p and temperature 
T - depend in linear approximation only on the axial velocity perturbation: 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

with PO, po and TO denoting the pressure, density and temperature in the ideally 
expanded parallel flow, respectively. 

So far, the governing equations are formally identical with those describing the 
supersonic flow in the interior of a cylindrical duct. The fundamental physical differ- 
ence between the two types of flow manifests itself in different boundary conditions. 
In the case of a duct, the velocity vector at the wall must be tangential to the 
prescribed contour, whereas for a free jet the existence conditions of an ideal vortex 
sheet separating a flow from a medium at rest require the pressure at the jet boundary 
to be continuous (cf. Ward 1955). Consequently, from (2.3a), this condition can be 
formulated as 

However, equation (2.4) is not the proper mathematical form of the boundary condi- 
tion, since it does not guarantee the continuity of the velocity potential at the nozzle 
edge r = 1, 5 = 0, which must be fulfilled at any location in the field, even in the 
case of discontinuities (shocks) being present in the flow (Ward 1955). Therefore, the 
appropriate form of the boundary condition implying (2.4) is 

+ I r E 1  = 4(1,cp,O), 5 > 0. (2.5) 
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In order to complete the initial-boundary value problem for the wave equation (2.1), 
we further have to specify the functional form of both the velocity potential 4 and its 
first derivative with respect to < at < = 0. Physically, this means that the components 
(2.2) of the velocity perturbation vector must be known in the nozzle exit cross-section. 
Hence, the mathematical description of supersonic free jet flow is formally reduced 
to a Cauchy problem for the wave equation similar to that obtained for duct flow in 
Part 1, the only difference consisting in the boundary condition (2.5) prescribing the 
velocity potential at r = 1 instead of its normal derivative. 

2.2. General solution 

The general solution of the inhomogeneous initial-boundary value problem specified 
in the preceeding subsection can be found in a quite similar way as in Part 1, viz. 
by using the eigenfunctions and eigenvalues of the associated homogeneous problem. 
From a separation ansatz for the wave equation (2.1) involving the homogeneous 
form of the boundary condition (2.5) 

the velocity potential 4 ( r ,  q, 5 )  is obtained in the following form: 

m m  + ( r ,  9, 5) = C C J m ( P m n r )  [~mn(<)cosmc~ + B m n ( i )  sinmql, (2.7) 
m=O n=l 

where Jm(x)  are the Bessel functions of first kind and integer order m and the Pmn 
denote the real positive zeros of Jm(x) arranged in ascending order of magnitude. By 
utilizing the orthogonality properties of the Bessel and the harmonic functions, the 
following complex relation between the coefficient functions Amn(c),  Bmn(<) is easily 
derived from (2.7): 

Cmn(0 := A m n ( 0  + iBmn(i) 

- - 1 1’ r $(r,  9, i) Jm(Pmnr) eimq drdq (2.8) 
.n Ji+i(Pmn) 

where for m = 0, the right-hand side has to be divided by 2. Now, by integrating (2.8) 
twice by parts with respect to r and c respectively, we obtain 

-- Jm(Pmnr) eimV drdq} , (2.9) 
P i n  

while on the other hand, differentiating (2.8) twice with respect to 5 yields (C:,(<) 
denotes d2 Cmn/dy2) 

(2.10) 

so that after multiplying (2.9) with Pin, adding the result to (2.10) and using both the 
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wave equation (2.1) and the boundary condition (2.5), we finally obtain the simple 
result 

(2.11) 

Note that as above, the right-hand side has to be divided by 2 for m = 0. Thus, as in 
the case of duct flow, the coefficient functions Amn(y), Bmfl(y) of the velocity potential 
(2.7) are given as solutions of the inhomogeneous differential equation (2.11) for a 
mass-spring system. Since the right-hand side of (2.11) does not depend on [, it is 
straightforward to establish the general solution (2.7) in terms of the physical initial 
conditions, but the resulting expressions are rather lengthy and are therefore not 
reported here. 

2.3. Solutions with harmonic azimuthal dependence 
In order to simplify the further considerations, we will as in Part 1 restrict the 
discussion to problems where the functional dependence of the velocity potential on 
the azimuthal angle cp is given by the single harmonic function cos mcp (m = 0, 1,2. . .). 
For these cases, the general velocity potential (2.7) simplifies to 

m 

4 ( r ,  CP, C) = cos mcp C A m n ( O  J m ( P m n r )  = 4 m  ( r ,  cos mcp- (2.12) 
fl=l 

By solving the ordinary differential equation (2.1 1) for this special case, incorporating 
the initial conditions at the nozzle exit 5 = 0 

4 ( r ,  CP, 0)  = 4 m  ( r ,  0)  cos mcp, (2.13~) 

via the integral relation (2.8) and using the known series (cf. Watson 1944) 

(2.13b) 

(2.14) 

(2.16b) 

Thus, via (2.15) and (2.16), the velocity potential (2.12) has been related to the 
physical initial conditions (2.13), i.e. to the velocity perturbation vector at the nozzle 
exit 5 = 0. Once their functional form has been known either from experiment or by 
theoretical argumentation, the integrals in (2.16) can be evaluated and the complete 
flow field can be determined by (2.2) and (2.3), which relate the velocity potential to 
the physical flow variables. 



332 A. Dillmann 

3 The singularities of cylindrical supersonic free jet flow 
3.1. Conditions for  the occurrence of singularities 

Like the case of duct flow, the linearized theory of free jet flow can under certain 
circumstances provide singular solutions, the singularities being representative of phe- 
nomena the theory is unable to describe correctly, viz. shock and expansion waves of 
finite amplitude. This has qualitatively been pointed out by Ward (1955) and later has 
been confirmed by Grabitz (1975) for the special case of the density field provided by 
Pack’s solution. Although the existence of singularities in the flow might appear as a 
point of merely academic interest at a first glance, it is associated with a very serious 
practical problem. The occurrence of singularities in functions described by infinite 
series gives rise to non-uniform convergence and thus to oscillatory behaviour of the 
partial sums (‘Gibbs’ phenomenon’) of these series, thus making their precise numeri- 
cal evaluation by direct summation impracticable in spite of the great computational 
power available today. In Part 1, it has been shown for the series associated with duct 
flow that this problem can completely be resolved by isolating the singular parts of 
any given solution in a universal series, which itself is evaluated by Kummer’s series 
transformation. Therefore, the aim of the following considerations is to extend this 
method to the present problem. 

As in Part 1, we will restrict the further discussion to velocity potentials of the 
form (2.12), where the azimuthal dependence is given by a single harmonic function, 
whereas the radial and axial dependence is described by an infinite series of the 
form 

00 

4rn (r ,  = C Amn Jm (Pmnr) (3.1) 
n= 1 

with the coefficients A,, being functions of the axial coordinate 5. Series of the 
form (3.1) are known as Fourier-Bessel series (of the first kind) and are well 
established in the mathematical literature (Watson 1944; Tolstov 1976). Their 
convergence behaviour is conveniently investigated by the basic relation (Tolstov 
1976) 

which, for sufficiently large n, must be fulfilled with L being some positive con- 
stant and 0 < E < 1 in order to guarantee uniform convergence of (3.1) and its 
first p - 1 derivatives with respect to r in [0,1]. Thus, in order to apply (3.2) 
to velocity potentials of the form (2.12), the large-n asymptotic form of the coef- 
ficient integrals (2.16) has to be determined. By using analytical standard meth- 
ods, which are described in detail elsewhere (chapter 6 of Bleistein & Handelsman 
1986), we obtain the following asymptotic expansion valid for integrals of the type 
(2.16) : 

provided that x ( r )  is continuous in [0,1] and x (0) = 0 except for rn = 0, where 
finite values are allowed. Now, by substituting (3.3) into (2.16) and considering the 
inequality (Tolstov 1976) 
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with L denoting some positive constant, we finally get the large-n asymptotic form 
of the coefficient integrals (2.16): 

( 3 . 5 ~ )  

(3.5b) 

From (3.4), it is clear that the first term on the right-hand side of (3%) varies as 
Pi?2, and since 

I SinPmnSI < 1 ,  (3.6) 

we can using (3.2) draw the important conclusion that non-uniform convergence of 
the first derivatives of (2.15) occurs whenever qm (1,O) # 0, i.e. when a discontinuity of 
&$/i?C occurs at the nozzle edge r = 1 , c  = 0. Physically, this means because of ( 2 . 3 ~ )  
that ideal expansion at the nozzle edge (i.e. not necessarily in the inner portions of 
the nozzle exit cross-section) is sufficient to guarantee a bounded continuous solution 
throughout the field. 

Therefore, in a similar manner as in Part 1, by defining the universal series 

we can decompose any function (2.15) by suitable addition and subtraction of (3.7) 
in the following manner: 

with the first term on the right-hand side containing all singularities and discontinuities 
caused by non-uniform convergence, while all the remaining terms correspond to 
bounded continuous functions with bounded continuous first derivatives. Hence, both 
the discussion of singular behaviour and the problem of evaluating non-uniformly 
converging series have been shifted to the series Sm (r ,  c), whose universal character 
has thus become obvious. 

3.2. The evaluation of the first derivatives of Sm ( r , c )  and their singular behaviour 

In Part 1, the problem of evaluating the non-uniformly converging series associated 
with supersonic duct flow has successfully been resolved by the extension of a 
well-established analytical tool, viz. Kummer’s series transformation, to Dini series. 
Therefore, it appears appropriate to apply this method also to the Fourier-Bessel 
series connected with supersonic free jet flow. The basic idea behind Kummer’s series 
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transformation is as follows: having given a non-uniformly converging series S for 
evaluation 

m 

s= ) \ s ,  u 
n= 1 

one has to find a suitable so-called comparison series 
m 

5 = 1 3 ,  

(3.9) 

(3.10) 
n=l 

whose terms are asymptotically related to the terms of (3.9) in the following manner: 

(3.11) 

and which thus exhibits about the same poor convergence, but whose sum $ is known 
in closed analytical form. Then, by subtracting (3.10) from (3.9), we get 

(3.12) 
n=l  

and are thus left with the numerical evaluation of a series which by (3.11) converges 
uniformly, while all the singularities (and therefore, all problems arising from non- 
uniform convergence) are now buried in the closed expression 5. Hence, by adopting 
the notation introduced in (3.9)-(3.12) and writing the first derivatives of Sm(r,4') in 
the form 

(3.1 3a) 

(3.13b) 

with S ~ ~ , ~ ( Y , [ ) ,  smn, t ( r , [ )  denoting the derivatives of the terms of (3.7), we have 
to find appropriate comparison terms Smn,r(r,  C), 3mn,c(r, 4') which have the desired 
asymptotic - behaviour (3.1 1) and, furthermore, can be summed to closed expressions 
Sm,r(r,4') ,  gm,[(r , [ ) ,  so that Kummer's series transformation (3.12) can be applied in a 
straightforward manner. 

By adopting the same procedure as in Part 1, this task can be solved by replacing 
the Bessel functions, their derivatives and their zeros by their well-known asymptotic 
expansions (cf. Abramowitz & Stegun 1972) : 

112 

cos (x -rn42-44)  + 0 - , Jm(x) - + (2) ( x:12) 

112 

sin (x-rn7q2-44) + 0 

(3 .14~)  

(3.14b) 

Pmn - P m n  + 0 (k) , Pmn := (n+m/2-1/4)nn, (3.144 

thus expressing Smn,r(Y, C), S m n , [ ( r ,  4') in terms of harmonic functions, which can be 
summed to closed expressions by using the classical analytical methods available for 
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Fourier series. Since however the corresponding expressions are somewhat lengthy 
and provide nothing new from the physical point of view, they are not given here 
but reported in the Appendix. With the closed comparison sums (A6), the singular 
behaviour of the series Sm,(r, c),  Sm,c(r, [) can conveniently be discussed, while by 
using the comparison terms (A 5), their numerical evaluation via Kummer’s series 
transformation (3.12) represents no serious problem any more. 

From equation (A6) it is therefore easily established that for r > 0, Sm,r(r ,c)  and 
Sm,c(r,c) exhibit exactly the same singularity pattern as found in Part 1 for duct flow, 
viz. discontinuities at ( r&c  - 1)  = 4k and logarithmic poles at ( r + ( -  1) = 4k+2, with 
k being an integer number. The corresponding pattern is illustrated in figure 1. Also, 
So,[ and S1,r exhibit inverse-square-root singularities on the axis r = 0 at [ = 1,3,5 ..., 
respectively. Following (3.8), these singularities are present in the flow whenever there 
is a discontinuity of pressure at the nozzle edge and therefore, in physical reality, 
shock and expansion wave patterns are produced, whose spatial structure closely 
resembles the singularity pattern illustrated in figure 1. Thus, as in the case of duct 
flow, linear potential theory itself seems to indicate the locations where it fails to 
describe physical phenomena adequately. 

Finally, the question of the discontinuous changes of the velocity components at 
the nozzle edge r = 1, [ = 0 is of special interest since one expects intuitively that at 
this location, the conditions of the Prandtl-Meyer expansion are fulfilled. From (A 6) 
it is easily derived that on approaching r = 1 from the left-hand side of the r-axis at 
c = 0 (cf. figure 1, arrow a), we have 

(3.15) 

whereas on approaching c = 0 from the right-hand side of the c-axis at r = 1, we get 
(cf. figure 1, arrow b) 

1 
- 
sm,r(l-o,o) = -[Y,(-O) - Ym(-0)] =o, 
Sm,c(l-O,O) = - [ Y m ( - O )  + Y m ( - O ) ]  = 1 ,  
- 

since according to (A 7), the function Y, (x) varies as sgn x in the vicinity of x = 0. 
From (2.12), (3.8) and (2.2), it is thus easily established that the azimuthal velocity u 
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is continuous at the nozzle edge, while the ratio of the discontinuous changes of the 
radial and axial velocities u and w is in any half-plane cp = const. given by 

(3.17) 

This is the well-known Ackeret relation, which indeed represents the Prandtl-Meyer 
condition for the case of small perturbations of a uniform parallel flow with Mach 
number MO (Oswatitsch 1952). 

4 Asymptotic reflection and transmission laws 
By means of the methods described in the previous sections, we are now able to 

derive and evaluate supersonic free jet flow fields of interest. However, in order to also 
be able to interpret the physical nature of the results, we will first study the general 
rules which govern the propagation of small perturbations along the characteristics 
of the wave equation. When substituting the general form (2.12) of the velocity 
potential for solutions with harmonic azimuthal dependence into (2. l), we obtain a 
hyperbolic partial differential equation for the function 4m (r ,  5) with characteristics 
given by 

r & 5 = const. (4.1) 
which, in three dimensions, represents an infinite set of characteristic surfaces, each 
of them consisting of Mach cones being arranged coaxial to the jet axis r = 0, with 
their base circles and vertices coinciding in an alternating manner (cf. figure 5 of 
Part 1). From (2.11), it is clear that the coefficients Amn(5)  will essentially be given 
by harmonic functions, so that a single elementary mode 4mn (r ,  cp, 5) of the velocity 
potential (2.12) can in complex form be written as 

+rnn(r, CP, 5) = J m ( P m n r )  eiBmr cos m q .  (4.2) 
By substituting the asymptotic expansions (3.14) for the Bessel function Jm(x)  and 
their zeros Pmn into (4.2), 4mn(r,cp,5) can be asymptotically decomposed into two 
parts propagating on the characteristics r + 5 = const. and r - 5 = const., respec- 
tively : 

where 
4 m n ( r ,  CP, 5) - @+(r, CP, 5) + @-(r,  CP, 5) 9 (4.3) 

which closely resembles the corresponding relation (4.4) derived in $ 4  of Part 1. 
By means of (4.3), the asymptotic reflection and transmission behaviour of small 
physical perturbations can be investigated in the same manner as in the case of duct 
flow by considering only the downstream component on a particular characteris- 
tic. 

Consider a small harmonic perturbation which originates at the jet boundary r = 1 
at an arbitrary location 5 = 5’ - 1, cp = cpo and is travelling towards the axis on 
the characteristic r + [ = [*. If we substitute this path of propagation into the 
corresponding part of (4.3), we obtain (C denotes a constant) 

At r = 0, the perturbation crosses the axis and enters the half-plane cp = cpo + n, thus 
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FIGURE 2. Asymptotic propagation laws for a sinusoidal perturbation. (a) Transmission through the 
axis r = 0 resulting in a phase shift of n /2 ;  (b) reflection at the jet boundary r = 1 with a phase 
shift of n. 

changing to the characteristic r - c = -[*. Consequently, we obtain on considering 
(3.14~) : 

and thus the result that upon crossing the axis, a perturbation suffers an asymptotical 
phase shift of n/2 as illustrated in figure 2(a) for an initially sinusoidal perturbation. 
This is not surprising since in Part 1 we had obtained the same result for the case of 
duct flow, which differs from the present problem only by the boundary condition. 

Now we investigate the case where different results are to be expected, viz. the 
reflection of a perturbation at the jet boundary r = 1. On travelling from the axis 
to the boundary, the disturbance is propagating along the downstream characteristic 
r - c = 1 - c' in the half-plane cpo. Hence, we obtain 

(4.6) 
c . .  

@-(r,  cp, c )  = -- elflmnc cos mcpo 

whereas after reflection, it remains in the same half-plane cp = cpo and changes to the 
characteristic r + [ = 1 + c'. This yields 

1112 

c .  
@+(r, cp, c )  = - elk" cos mcpo 

r1/2 

em cosmcpo (4.7) 
C '  

and thus an asymptotical phase shift of n, which means that at the jet boundary, the 
sign of a perturbation is just inverted. This reflection behaviour, which is illustrated 
in figure 2(b), is exactly opposite to that obtained for duct flow, where a perturbation 
is reflected unchanged at the wall. 

Since, besides constant factors, the first derivatives of (4.2) with respect to 5 have 
the same functional form as (4.2) itself, the same results hold for all flow variables 
(2.2) and (2.3) except for radial velocity, which depends on a 4 / a r .  A similar analysis 
on considering the asymptotic expansion (3.14b) for the derivative JL (x) of the Bessel 

- - ewmc' ' 

1112 
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FIGURE 3. Asymptotic propagation laws for a sinusoidal density perturbation travelling through a 

cylindrical free jet. Areas of compression are indicated by shading. 

function yields the result that a radial velocity perturbation suffers an asymptotical 
phase shift of -n/2 upon crossing the axis, while it is reflected unchanged (i.e. with 
zero phase shift) at the jet boundary. 

Finally, in order to give a practical example comparable with figure 7 of Part 1, the 
propagation of an initially sinusoidal density perturbation is illustrated in figure 3. 
Starting at r = 1, cp = cpo, c = 0 as an expansion-compression wave (i.e. expan- 
sive on the upstream side and compressive on the downstream side of the leading 
characteristic), the perturbation is travelling towards the axis, where it is transformed 
into a purely compressive wave by a phase shift of n/2 when entering the half-plane 
cpo + n. Being reflected at the jet boundary r = 1, 1; = 2, it suffers a phase shift of n, 
thus being transformed into a purely expansive wave which is travelling back towards 
the axis. When crossing the axis at c = 3 and entering cpo = n, it again suffers a 
phase shift of n/2, which restores the initial sinusoidal shape. After inversion upon 
reflection at r = 1, c = 4, the whole process is repeated with opposite sign, so that 
finally, after reflection at r = 1, c = 8, the wave is again travelling towards the axis 
with sinusoidal shape and the whole cycle starts again. 

Hence, besides the opposite reflection behaviour, we have obtained quite similar 
results as in the case of duct flow. For flow variables represented by a non-uniformly 
converging infinite series in terms of the elementary modes (4.2), the singular be- 
haviour is determined solely by their large-n asymptotic form, so that a sinusoidal 
perturbation corresponds to a discontinuity, while a symmetric cosine variation will 
result in a logarithmic pole. Also, radial focusing effects are to be expected in the 
vicinity of a logarithmic singularity close to the axis, since the elementary modes vary 
asymptotically in magnitude as r-'''. 

5 Elementary cases of supersonic free jet flow 
By means of the theory derived in the previous sections, we are now able to calculate 

and discuss solutions for a great variety of axisymmetric and non-axisymmetric free 
jets. In this section, we will focus our attention on those kinds of jets whose velocity 
potential is solely determined by the series Sm(r,4') and which thus describe the most 
interesting features of supersonic free jet flow. 

First, we have to find the particular initial conditions (2.13) which lead to the 
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desired velocity potential. It is easily verified from (2.12)-(2.16) that by specifying 

4(r,cp,O) = o ,  (5.1~)  

( M i  - 1)1/2 Ap 
- rm cosmcp, 

KM; Po 
(5.lb) 

which corresponds to a free jet emerging from the nozzle in parallel flow with the 
pressure perturbation in the exit cross-section being given by Ap rm cos mcp (Ap = 
const.), we obtain the velocity potential 

( M i  - 1)1/2 Ap 
K M ;  PO 

- _  - - Sm ( r ,  g) cos mcp . 

From (2.2) and (2.3), all physical flow variables of interest can now be computed in a 
straightforward manner. By introducing dimensionless perturbations 6 p  (r ,  cp, g) and 
6u (r, cp, 5) of density and radial velocity respectively, we obtain for example 

(5.3~)  

(5.3b) 

where 

Furthermore, it is of interest to know what shapes of the jet boundary are predicted 
by linear potential theory. By reversing the argumentation used in Part 1 to derive 
the boundary condition (2.6) for supersonic flow in ducts, we obtain the general result 
that the envelope surface of all streamlines originating at r = ro in the nozzle exit 
cross-section g = 0 is to a first order of approximation given by 

r (ro,cp, i) = ro + w o ,  cp, 5) (5.5a) 

where 

(5.5b) 

Thus, the shape of a particular streamtube can be determined by simply integrating 
the radial velocity perturbation, which gives the approximate streamline slope. 

Hence, by performing the integration (5.5b) with (5.3b) at ro = 1, we obtain the 
shape of the jet boundary: 

where 

P m n  n=l 
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Since (5.5b) is not defined for ro = 0, we have to consider this case separately. 
By transforming the velocity vector into Cartesian coordinates and using the limit 
relations of the Bessel functions J m ( x )  for x + 0 (cf. Abramowitz & Stegun 1972), 
it is straightforward to verify that the radial and azimuthal velocity on the axis both 
vanish for all m except m = 1 and that in this case, the velocity vector at ro = 0 
remains in the plane cp = 0,n. Consequently, the axis streamline also remains in this 
plane and we obtain 

with 

otherwise 

for the distortion of the axial streamline in cp = 0,n. 
In the case m = 0, the velocity potential (5.2) describes an axisymmetric free 

jet emerging with constant under- or overpressure Ap in the nozzle cross-section. 
Although the first formal solution of this problem by Pack (1950) has been known 
for several decades, it has not been evaluated completely until now because of the 
problems associated with the non-uniform convergence of the first derivatives of 
S m ( r , [ )  (cf. $3). By means of Kummer’s series transformation, these difficulties are 
now completely resolved and all physical flow variables of interest can be readily 
determined and discussed. 

The corresponding numerical results are graphically illustrated in figure 4. The 
geometry of the problem is shown in figure 4(a) for an underexpanded (i.e. Ap > 0) 
free jet, where (5.7) has been used to give an approximate idea of its boundary 
shape. Figure 4(b) presents the dimensionless perturbation ( 5 . 4 ~ )  of density, while 
figure 4(c) shows the dimensionless perturbation (5.4b) of radial velocity and also the 
dimensionless distortion (5.7) of the boundary streamlines, which essentially represents 
the integral of (5.4b) with respect to 5. It is therefore clear that the logarithmic poles 
of radial velocity correspond to inflection points of 6r (1, C), while the discontinuities 
of 6u(l,[) give rise to kinks in the jet contour. Finally, in order to provide an 
impression of the radial density profiles, figure 5 additionally presents surface plots 
of 6 p ( r , [ )  in the semicircle 0 < r < 1, 0 < cp < n for various locations f: = const. 

The obtained results are quite similar to those for duct flow (cf. Part 1) and can 
in an analoguous manner be qualitatively explained by the asymptotic propagation 
laws derived in $4. When leaving the nozzle with slight overpressure, the boundary 
streamlines are bent outwards abruptly, and consequently a discontinuous expansion 
wave is propagating along the downstream surface of the leading Mach cone with 
base circle in [ = 0 and vertex in [ = 1, while the flow inside the cone remains 
undisturbed. By radial focusing, the magnitude of the expansion wave increases 
strongly as the axis is approached. When crossing the axis at C = 1, the discontinuous 
compression-expansion wavefront is transformed into a symmetric, purely expansive 
wave to generate a region of extremely low density in the downstream vicinity of 
r = 0, [ = 1. At the jet boundary r = 1, f: = 2, the purely expansive wave is inverted 
into a purely compressive wave, which ends up in a region of extremely high density 
at the axis in the upstream vicinity of 5 = 3. (Note that in the case of duct flow, 
the reflection behaviour is just the opposite, so that upon reflection at a rigid wall, 
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FIGURE 4. Underexpanded axisymmetric free jet (Pack’s solution). (a )  Problem geometry; (b)  
dimensionless density perturbation 6 p ( r , c )  inside the jet (top) and on the jet axis (bottom); ( c )  
dimensionless perturbation 6u(r, c )  of radial velocity at the jet boundary (top) and inside the jet 
(bottom). Dashed curve represents distortion of boundary streamline. 
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F~GURE 5. Underexpanded axisymmetric free jet (Pack’s solution). Surface plots of the dimensionless 
density perturbation 6 p ( r , [ )  in the semicircle 0 6 r < 1, 0 < cp < n at various locations [ = const. 
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an identical low-density region would have been formed.) Now, in full qualitative 
agreement with the asymptotic propagation laws, the wave is again transformed into 
its initial discontinuous compression-expansion shape, and after reflection at the 
boundary at c = 4, the whole process is qualitatively repeated with opposite sign (i.e. 
with a high-density region at r = 0, 5 = 5 and a low-density region at r = 0, 5 = 7), 
so that after reflection at r = 1, c = 8, the whole cycle starts again. However, as 
in the case of duct flow, the wave pattern is never strictly periodic because of the 
incommensurable eigenvalues Pon. 

The case rn = 1 of (5.2), which represents the most simple three-dimensional 
analogy to Pack’s solution, corresponds to a free jet emerging in parallel flow with 
the pressure distribution across the nozzle exit cross-section having the shape of an 
oblique disk (as shown in figure 7 for the density distribution at 5 = 0). Figure 6(a) 
shows the problem geometry in the axial cross-section cp = 0,n while figures 6(b) 
and 6(c) present the dimensionless perturbations of density, radial velocity and both 
axis and streamline distortion in the half-plane cp = 0 in the same manner as in 
figure 4. Also, additional surface plots of the dimensionless density perturbation are 
presented in figure 7 for various locations 5 = const. Similar to the axisymmetric jet, 
the discontinuity of pressure at the nozzle edge r = 1, 5 = 0 leads to discontinuous 
waves propagating into the inner portions of the jet, which however are of varying 
sign and magnitude for different azimuthal angles. Inside the leading Mach cone, 
the density distribution remains undisturbed, but a linearly increasing radial velocity 
perturbation (and a corresponding azimuthal component) is induced in the direction 
of the density gradient. Close to the axis radial focusing occurs as in the axisymmetric 
case to produce regions of extreme density values close to the axis in the vicinity 
of 5 = 1, and upon crossing the axis the perturbations are transformed from the 
discontinuous into the logarithmic type. Hence, the whole physical mechanisms work 
as in the axisymmetric case with the only difference consisting in the asymmetry and 
the fact that the axis remains undisturbed since all perturbations cancel out there. 
Similar results are also to be expected for rn > 1, so that these cases do not merit a 
detailed discussion. 

6 Comparison with experiment 
6.1. Mach-Zehnder interferograms 

As in the case of duct flow, the existence of singularities has cast considerable doubt 
on the validity of linear potential theory. For example, Ward (1955) noted that ‘the 
validity of the linearized solution on and near the characteristics c k r = 1,3,5.. . is 
doubtful’ and that ‘it is not possible to say whether or not the linearized solution is a 
valid continuation through 5 - r = 1 and subsequent singularities’. The first attempt 
at experimental verification is obviously due to Grabitz et al. (1979), who calculated 
theoretical Mach-Zehnder interferograms by numerical integration of the density field 
provided by Pack‘s solution and compared them with experimental images. However, 
the accuracy and spatial resolution of their numerical integration is rather low and 
the experimental images are strongly disturbed by turbulent fluctuations in the free 
shear layer. Consequently, while their results indicate that linear potential theory 
might be adequate to describe the real flow field at least in the portions close to the 
nozzle orifice, there is still considerable uncertainty about its validity throughout the 
field. It thus appears appropriate to repeat their comparison using more advanced 
experimental techniques and a more accurate theoretical treatment. 
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FIGURE 6. Non-axisymmetric free jet emerging with oblique pressure distribution. ( a )  Problem 
geometry; ( b )  dimensionless density perturbation 6 p ( r ,  [) inside the jet; (c )  dimensionless perturba- 
tion 6 u ( r , ( )  of radial velocity at the jet boundary (top), inside the jet (middle) and on the jet axis 
(bottom). Dashed curves represent distortions of boundary and axis streamlines. 
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F~GURE 7. Non-axisymmetric free jet emerging with oblique pressure distribution. Surface plots of 
the dimensionless density perturbation 6 p ( r , [ )  in the semicircle 0 < r < 1, 0 < rp < n at various 
locations [ = const. 
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FIGURE 8. Geometry for a straight light beam passing through a cylindrical free jet. 

The Mach-Zehnder interferometer is one of the classical instruments of experi- 
mental fluid mechanics, which utilizes the variation of the index of refraction of a 
gas with its density. A parallel monochromatic light beam is split into two coherent 
beams, one of which passes through the test section, while the other (reference beam) 
bypasses the test section. When passing through the test section, the first light beam 
in general suffers a phase shift A with respect to the reference beam due to different 
densities along their paths, so that upon recombination on the interferometer screen, 
the two beams are no longer in phase: 

A - n,-1 
- - ~ J( '- l)do, 
271 1 0  D Po0 

where & is the vacuum wavelength of the monochromatic light source, pm and noo 
denote the density and index of refraction of the surrounding medium respectively, 
and p is the variable density inside the test section. The integration variable o denotes 
the spatial coordinate in the direction of the light beam and the integral has to be 
taken over the total length of the light path SZ inside the test section (cf. Goldstein 
1983). In deriving (6.1), it has been assumed that the interferometer is operated 
with infinite fringe setting, which means essentially that the geometrical paths of the 
reference and test beams have equal lengths. 

Thus, constructive or destructive interference can occur depending on the magnitude 
of the phase shift A .  The intensity I of the recombined light beam is the quantity 
observed visually or measured by a photographic device. From elementary wave 
optics (cf. Goldstein 1983), it can be derived that 

I = I0 C O S ~  A12 (6.2) 

with 10 being the peak intensity. It is obvious from (6.2) that if 41271 is an integer, 
the corresponding region on the screen will exhibit maximum brightness, while if 
A1271 is a half-integer, the field will be completely dark. Thus the screen image will 
consist of a series of bright and dark regions (fringes), each one representative of 
a specific value of 41271 and differing in magnitude from the adjacent fringe of the 
same intensity by an increment of unity. 

In order to calculate theoretical Mach-Zehnder interferograms of cylindrical su- 
personic free jets, we have to specify (6.1) to the geometry shown in figure 8. Suppose 
that the test beam is passing through a certain cross-section ( = const. of a cylindrical 
jet (radius &) parallel to the r-axis at a vertical distance q from the centreline (both 
coordinates r and y~ are normalized with &). The density p inside the jet is assumed 
to be given in the form (2.3b) as a function of the polar coordinates r and cp at any 
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location 5 = const. The relative position of the test beam with respect to the flow is 
expressed by the view angle a between the straight line cp = 0 and the <-axis. In order 
to perform the spatial integration (6.1), we now have to express the polar coordinates 
T S ~ ,  c p ~  of the geometric light path in terms of the Cartesian coordinates t , q .  From 
elementary geometric considerations, we obtain 

( 6 . 3 ~ )  ro = ( t2  + q 2 ) l l 2 ,  

5 sin a + q cos a 

t cosa - q sin a 
c p ~  = arctan (6.3b) 

and thus, by (2.3b), the phase shift (6.1) can be written as 

A 
271 

(6.4) 
The calculation of the integral on the right-hand side of (6.4) is thus in general reduced 
to the termwise integration of the infinite series obtained by termwise differentiation 
of the velocity potential (2.7) with respect to 5. In a recent paper by Dillmann 
(1994b), it is shown that the above integration can be performed analytically. For the 
most general case of the velocity potential (2.7), the following infinite double series is 
obtained? : 

where primes denote differentiation with respect to 5 and 0, (A, q )  denotes a universal 
function being given by a double Neumann series (Dillmann 1994b): 

a2 +k 

@ m ( A , q )  = 2 x J 2 k + 1  (A(l-q2)' /2)  c(-1)jJm+zj(Aq), A 2 0, -1 d q d + I ,  
k=O j=-k 

(6.6) 
which converges uniformly in its domain of definition and can be used for the 
numerical computation of 0, (A, q).  For large values of its first argument A, 0, (A, q )  
admits the asymptotic expansion (T ,  denotes the Chebyshev polynomial of the first 
kind and order rn) 

-1 < 4 < +1 (6.7) 

which shows that for A + 00, 0, (A, q )  represents a bounded continuous function with 
an increasing number of oscillations in -1 < q < +1 for increasing A. Hence, by 
means of (6.4)-(6.6), it is in general possible to express the phase shift A as an infinite 
series in terms of 0, (Pmn, q )  with its coefficients being directly determined from the 
velocity potential 4 (r ,  cp, 5). 

t In the original paper, a somewhat different notation has been used. 
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(6.4) and (6.5) 
For the special case of the velocity potential (5.2) discussed in $ 5, we obtain from 

" E m ( q , [ )  cosm(a+i.n) ( 6 . 8 ~ )  
PCQ K P O  1 A 

2.n 
( l -q2)1 '2+- -  

where Em (q, 4') denotes the infinite series 

(6.8b) 

which by (3.4), (3.14~) and (6.7), can be shown to converge uniformly and thus to 
represent a bounded continuous function throughout the field. 

Hence, we are now able to calculate theoretical Mach-Zehnder fringe patterns 
for the free jets discussed in $ 5  by simply substituting (6.8) into (6.2). Since (6.8b) 
represents an integral average of the dimensionless density perturbation (5.4a), a 
similar spatial structure and cellular pattern of the theoretical interferograms can 
be expected. By the same methods as used in $ 3  and the Appendix to discuss the 
singular behaviour of &(r ,c) ,  it can be shown that the first derivatives of Em(q , ( )  
exhibit discontinuities at q f 4' = 2k + 1 (k  integer), which are due to the first term 
of the asymptotic expansion (6.7) and correspond to the projection of the envelope 
of the leading characteristic surface. Furthermore, additional vertical singularities of 
the 4'-derivative occur at even integer values of 4' due to the second term of (6.7); 
in particular, these are logarithmic singularities at 4' = 2 + 4k and discontinuities 
at 5 = 4k (k integer). Obviously, these singularities are the projections of the base 
circles of Mach cones, i.e. they indicate the locations where a discontinuity or 
logarithmic singularity of the internal flow field hits the jet boundary and is reflected 
back towards the axis. Figure 9(a) presents the complete singularity pattern in the 
(q, c)-plane, while figure 9(b) shows a contour plot of Em (q, 5) for the axisymmetric 
case m = 0. Both figures clearly illustrate the pronounced cellular structure of the 
flow field. The analytical representation (6.8) allows calculations of almost arbitrary 
spatial resolution and thus theoretical images of nearly photographical quality, which 
can be compared with corresponding experimental images. 

The axisymmetric case m = 0 of (5.2), i.e. the solution of Pack, can be physically re- 
alized by a parallel-flow Laval nozzle being operated at slightly off-design conditions. 
Corresponding free jet experiments have been performed at the Max-Planck-Institut 
f i r  Stromungsforschung in Gottingen, where an appropriate experimental setup was 
readily available. A slender Laval nozzle was designed with the method of character- 
istics to produce an ideally expanded uniform parallel flow of Mach number 1.6 at 
its exit cross-section. The characteristic diameters were 15 mm at the nozzle throat 
and & = 16.95 mm in the exit cross-section; the axial distance between throat and 
orifice was 67.35 mm. The nozzle was connected via a conduit with a commercial dry 
air supply system consisting of a compressor, a dehumidifier and a receiver with a 
capacity of 2 m3 and a maximum storage pressure of 1.4 MPa. A manually operated 
control valve in the air supply conduit allowed the throttling of the reservoir pressure 
to a desired value, which could be read off from an analog manometer. The nozzle 
exhausted to atmospheric pressure; the free jet emerging from the orifice was observed 
with a Mach-Zehnder interferometer operated in infinite fringe setting with a field 
of view of about 2; nozzle diameters. Behind the control valve, a pressure sensor 
was installed, whose output signal was electronically compared with a preadjusted 
threshold to trigger an electronic image aquisition system consisting of a CCD cam- 
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RGURE 9. The phase shift series Em (q, [) for the axisymmetric case rn = 0. (a) Singularity pattern 
of the first derivatives in the (q ,  [)-plane; (b) contour plot of Eo (q, [) for 0 < q < +1, 0 < [ < 6. 

era (resolution 512 x 512 pixels), a synchronized stroboscope equipped with a pulsed 
light-emitting diode (2, = 660 nm), and a microcomputer equipped with a frame 
grabber. When the control valve was opened and the pressure threshold was reached, 
the image aquisition system took up to four successive snapshot interferograms with 
an exposure time of 1 p in a time distance of 40 ms, which were then stored on the 
microcomputer for further processing. The time distance between the single snapshots 
proved to be short enough to ensure steady state efflux conditions for a complete 
series of four successive pictures. 

In order to eliminate the turbulent fluctuations in the free shear layer, time-averaged 
Mach-Zehnder interferograms were then computed using software developed at the 
Max-Planck-Institut fur Stromungsforschung, which has been described in detail by 
Bartels-Lehnhoff et al. (1993). In a first step, the fringes of each digitized exper- 
imental snapshot were extracted by a semi-automatic algorithm and approximated 
by polygons. The resulting polygons were then numbered according to their order 
of interference by using a graphical editor. The complete field of the order of in- 
terference, i.e. the phase shift A ,  was then obtained by interpolation between the 
numbered polygons using the intensity I in the original interferogram. Thus, for each 
experimental snapshot, a high-resolution field of the phase shift A was obtained. The 
time-averaged field was then obtained by computing the pointwise arithmetic mean 
of eight snapshot fields. Finally, the time-averaged phase shift A was substituted into 
equation (6.2) to yield the time-averaged interferogram. 

Examples of an underexpanded and an overexpanded axisymmetric supersonic free 
jet are presented on the left- and right-hand sides of figure 10, respectively. On 
each side, photograph ( a )  shows an experimental snapshot, photograph (b )  the time- 
averaged interferogram obtained from eight experimental snapshots, and photograph 
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(c) shows the corresponding theoretical interferogram computed from (6.2) and (6.8) 
for m = 0 with noo - 1 = 2.719 x & = 16.95 mm and & = 660 nm. The 
corresponding values of the parameters p0/pm, Ap/lcpo and Mo were determined 
from the time-averaged interferograms by least-squares fitting of the experimental 
and theoretical fringes in the nozzle exit cross-section [ = 0 and on the jet axis 
9 = 0. While in the experimental snapshots, only the portions close to to the nozzle 
orifice are clearly recognizable and the structures further downstream are strongly 
disturbed by turbulent fluctuations, the time-averaging process has almost completely 
eliminated any random perturbations so that only the steady state component of 
the free jet flow field remains. The agreement between the time-averaged and the 
theoretical interferograms is striking; the geometric shape and location of all fringes 
are almost identical and deviations only occur in minor details. At the jet boundary, 
the theoretical fringe density is somewhat higher and the fringes are thinner than 
in experiment, which can be explained by the fact that, theoretically, a rectangular 
initial pressure distribution and an ideal separating vortex sheet have been assumed, 
while in reality, steep gradients at the boundary are smoothed by boundary layer 
effects. Nevertheless, the excellent overall agreement between theory and experiment 
removes any doubt that linear potential theory is adequate to describe supersonic 
free jet flow even close to the singularities and that it is indeed a valid continuation 
through i - r = 1 and subsequent singularities. 

6.2. The wavelength of an axisymmetric free jet 
The cellular, almost periodic structure of supersonic free jets represents their most 
prominent feature. Commonly, the spatial distance between two subsequent shock 
reflections at the jet boundary is called the ‘wavelength’ of a free jet, the resulting 
‘diamond pattern’ being clearly visible in schlieren pictures and shadowgraphs. A 
number of theoretical investigations has been made with the object of predicting free 
jet wavelengths, the most prominent of these being due to Pack (1950). Following an 
interpretation by Prandtl (1904), Pack assumed that the end of the first shock cell 
coincides with the first minimum of the jet boundary, as this is the case for plane 
jets. As can be seen from the dashed line in figure 4(c), the first minimum is placed 
in the vicinity of [ = 2.44 and consequently Pack obtained the following formula for 
the wavelength L of the first shock cell: 

L = 1.22 D ( M i  - 1)1’2 (6.9) 

where D = 2& denotes the orifice diameter of the nozzle. However, Pack‘s formula 
is inconsistent. From figure 4 it is clearly obvious that the first minimum of the jet 
boundary is not associated with any discrete event in the jet flow pattern, whose 
cellular structure is determined by the singularities transversing the jet once in a 
distance A[ = 2. Also, from the considerations in the previous section, there is 
no doubt that the diamond pattern visible in schlieren pictures and shadowgraphs 
is associated with the singularity pattern of the phase shift A ,  which according to 
figure 9, exhibits the same characteristic length. (Note that in schlieren pictures 
and shadowgraphs, the first and second derivatives of A are visualized, respectively.) 
Therefore, the correct formula for the wavelength is 

L = D ( M i  - 1)1’2, (6.10) 

which, of course, differs from Pack’s result and is identical with the corresponding 
length in a plane free jet. 

In his pioneering experimental study, Emden (1899) determined the wavelengths 
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FIGURE 10. Comparison between theory and experiment for the axisymmetric case m = 0 of the ve- 
locity potential (5.2) (Pack’s solution). Photographs on the left- and right-hand sides correspond to an 
underexpanded and overexpanded free jet, respectively. Theoretical parameters are po/pm = 1.497, 
Aplicpo = +0.073 and MO = 1.75 for the underexpanded and po/pm = 1.370, Ap/icpo = -0.092 and 
MO = 1.48 for the overexpanded jet. (a) Experimental snapshot Mach-Zehnder interferogram; ( b )  
time-averaged Mach-Zehnder interferogram obtained from eight snapshot pictures; ( c )  theoretical 
Mach-Zehnder interferogram computed from (6.2) and (6.8). 

6 5 

of supersonic free jets of air, carbon dioxide and hydrogen, which were obtained 
by the discharge of a reservoir through a number of nozzles of different shapes but 
convergent to the orifice. By careful evaluation of more than 300 shadowgraphs, he 
found that the wavelength L could with great accuracy be expressed by the empirical 
fit 

L = 0.88 D (E - 1.9) , (6.11) 
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i.e. L depends on the ratio of reservoir pressure PR to ambient pressure po, which in 
Emden’s experiments varied from 1.9 up to 20. Note that Emden found (6.11) to hold 
for both axisymmetric and plane jets, which is also an indication that (6.10) and not 
(6.9) is the correct expression for the wavelength. Pack compared his formula with 
Emden’s empirical fit by expressing the Mach number at ideal expansion Mo in terms 
of the pressure ratio p ~ / p o  via Bernoulli’s equation 

2 ((:)2) (6.12) 

which however has the disadvantage that the resulting expression does not depend on 
the pressure ratio in the nozzle orifice, i.e. on the crucial quantity deciding whether or 
not linear theory can be applied. Therefore, it appears more appropriate to express 
the right-hand sides of (6.9), (6.10) and (6.11) in terms of the efflux Mach number 
MN (which, in general, differs from the ideal expansion Mach number Mo) and the 
pressure perturbation Ap in the orifice. Again, from Bernoulli’s equation, we obtain 

- = ( l + T  P R  K-1 (t; - + 1  ) , 
PO 

M Z = z  2 [ ( 1 + p ; )  K-1 (2+i)2i], 

(6.13~) 

(6.13b) 

which have to be substituted into (6.9), (6.10) and (6.11) to yield the wavelength 
LID as a function of nozzle exit Mach number M N  and dimensionless pressure 
perturbation Ap/po .  

Figure 11 shows a comparison of the dimensionless wavelengths LID for Pack‘s 
formula (6.9), equation (6.10) and Emden’s empirical fit (6.11) for MN = 1 (i.e. 
sonic conditions at the nozzle exit), IC = 1.4 and 0 d A p / p o  4 1. The agreement 
between Emden’s formula and equation (6.10) is remarkable, whereas the predictions 
of (6.9) are clearly too high. Obviously, the correct formula for the wavelength of a 
supersonic free jet is (6.10) and not (6.9), and it seems that the capability of linear 
theory to predict wavelengths reaches far beyond the limit Ap/po  Q 1 where it can give 
an adequate description of the internal flow field. 

7 Summary and conclusions 
In this paper, the methods developed in Part 1 for supersonic duct flow have been 

extended to free jet flow. By decomposition of the flow into an ideally expanded 
homogeneous parallel flow and small irrotational perturbations, the mathematical 
formulation in 3 2 leads to an initial-boundary value problem for the wave equation 
(2.1), which differs from that obtained for duct flow only by the boundary condition 
(2.5) prescribing the velocity potential at r = 1 instead of its normal derivative. 
The general solution arises in the form of the infinite double series (2.7), which 
can be interpreted as a harmonic Fourier series in the azimuthal angle q, with each 
coefficient being itself an infinite Fourier-Bessel series of the first kind. The coefficients 
of the Fourier-Bessel series obey the well-known ordinary differential equation (2.11) 
of a mass-spring system with constant exciting force and thus the problem of 
cylindrical supersonic free jet flow has been solved for arbitrary axisymmetric and 
non-axisymmetric efflux conditions at the nozzle orifice. 

In $3,  it has been shown that supersonic free jet flow exhibits essentially the 
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FIGURE 11. The wavelength LID of a supersonic free jet at sonic exit conditions ( M N  = 1) according 
to Pack‘s formula (6.9), equation (6.10) and Emden’s empirical fit (6.1 1). Relations (6.13) have been 
used to express LID in terms of the pressure perturbation Ap/po .  

same singularities as the flow in ducts, which determine the cellular structure of the 
flow pattern and cause non-uniform convergence of the infinite series describing the 
physical flow variables. This phenomenon arises whenever a discontinuity of pressure 
at the nozzle edge occurs, and it has been shown that the axial and radial velocity 
components exhibit jumps at this location which satisfy the Ackeret relation, i.e. the 
Prandtl-Meyer relation in the linear limit. Thus, as in the case of duct flow, the 
bending of boundary streamlines gives rise to singularities propagating along the 
leading characteristic. In order to allow a discussion of singular behaviour and to 
resolve the numerical problems associated with non-uniform convergence, the method 
of Kummer’s series transformation, which has also been succesfully applied in Part 1, 
has been extended to the present case. 

For a qualitative understanding of the resulting flow fields, the asymptotic laws 
governing the propagation of small perturbations along downstream characteristics 
have been derived in $4. While upon transmission through the axis, a perturbation of 
a flow variable (except radial velocity) suffers an asymptotic phase shift of 71/2 and 
increases as r-1’2 as the axis is approached, it suffers a phase shift of 71 when being 
reflected at the jet boundary. (For a radial velocity perturbation, the phase shift is 
-71/2 upon transmission through the axis, whereas it is reflected unchanged at the 
wall.) Thus, while the transmission behaviour on the axis is the same as in the case 
of duct flow, it is just opposite at the free jet boundary. 

Two elementary cases of axisymmetric and non-axisymmetric supersonic free jet 
flow have been extensively discussed in $ 5,  along with Pack‘s classical solution for 
the axisymmetric jet with constant pressure perturbation at the nozzle orifice, for 
which no complete evaluation has been available in the literature although the formal 
solution has been known since 1950. The resulting flow fields exhibit a similar 
structure to the case of duct flow, but the spatial arrangement of compression and 
expansion regions is different due to the opposite reflection behaviour at the jet 
boundary. 

The singular nature of the solutions provided by linear potential theory has raised 
considerable doubt in the literature about its ability to describe the real flow field. For 
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the special case of the axisymmetric free jet described by Pack’s solution, simple free 
jet experiments have been performed. Time-averaged Mach-Zehnder interferograms 
have been computed from experimental snapshot pictures, and have been compared 
with theoretical images obtained by analytical integration of the density field for an 
underexpanded and an overexpanded free jet, respectively. The excellent agreement 
shows that linear theory is adequate to describe the real flow fields, even close to the 
singularities and also far downstream of the nozzle orifice. 

Furthermore, the wavelength predicted by linear theory has been examined, since 
this question is still subject to controversy in literature (cf. Carpenter 1978; Powell 
1992). It has been shown that the formula of Pack (1950), which is still widely 
accepted, is based on an incorrect interpretation of the wavelength as the location 
of the first minimum of the jet contour, which however is not associated with the 
characteristic length of the intersecting shock pattern inside the jet. The correct 
formula (6.10), which is identical with the one obtained for plane jets, has been shown 
to be in excellent agreement with experiment, whereas the predictions of Pack’s 
formula are about 20% too high. 

Thus, linear potential theory has been shown to describe real free jet flow in an 
adequate manner. Since the case of duct flow treated in Part 1 is based on essentially 
the same equations and differs from the present problem only by the boundary 
condition, it appears very likely that linear potential theory would describe the real 
flow in quasi-cylindrical ducts with similar success. 

Parts of this work have been supported by a habilitation scholarship of the 
Deutsche Forschungsgemeinschaft, which is gratefully acknowledged. The author 
is also indebted to his colleagues Mr T. Wetzel and Dr C. Soller at the Max- 
Planck-Institut fur Stromungsforschung for indispensable experimental support and 
for producing the time-averaged interferograms. 

Appendix. 
By differentiating the definition (3.7) of Sm(r,C) termwise with respect to r and 

S respectively, and adopting the notation introduced in (3.13), the terms of the 
corresponding infinite series can be written as 

from which, by substituting the asymptotic expansions (3.14) of the Bessel functions 
and their zeros, we obtain the following asymptotic expansions valid for large n:  
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provided that r > 0. In the case r = 0, r must be put equal to zero before introducing 
the asymptotic expansions (3.14), and we get 

since Jm(0) = 0 for all m # 0 and JL(0) = 0 for all m # 1. Obviously, the asymptotic 
expansions (A2), (A3) satisfy (3.11), and thus their leading terms can be used in 
Kummer's series transformation (3.12) as comparison terms for the derivatives (3.13) 
of Srn(r7 5)- 

Hence, by introducing the notation 

we can write the comparison terms Zrnn,Jr, C), ZrnnX(r, c )  in the form 

[Ym(r+5-1) + Yrn(r-5-l)] , r > 0 - 
Srn,i(r, 5) = r = 0, m = 0 (A6b) 

otherwise , 

and are thus completely related to the simple Fourier series (A4),  whose closed sums 
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remain to be determined. As has been shown by Dillmann & Grabitz (1994), this 
task can be solved by use of Lerch’s transcendent function. For the Fourier series 
( A ~ u ) ,  one obtains 

1 1 -sinnx/4 1 
2 271 1 + sin 71x/4’ 

m even, + - sgn sin 71x/4 + - In 

‘y&) = 

1 1 -sinnx/4 
271 1 + sinnx/4’ 

m odd, 
1 

(m-1)/2 . 
sgn sin 71x/4 - - In 

(A 7) 
where sgnx denotes the signum function, which gives -1,0 or +1 depending on 
whether x is negative, zero or positive. As is obvious from (A7), Ym(x) is a periodic 
function with period 8, which has discontinuities of magnitude 1 at x = 4k due to the 
signum function and logarithmic poles of alternating sign at x = 4k + 2 with k being 
an integer number. 

For the two Fourier series (A4b) and ( A ~ c ) ,  Dillmann & Grabitz (1994) obtain 
the analytical sums 

Q1(x)=- 1 ~ ( - s ) - z ( ~ ) - z ( ~ ) + z ( T ) ]  7 + x  3 - x  
2(271)’/2 

where Z(x) denotes a function of period 1, which in [0,1] is identical with the special 
case s = of Riemann’s generalized zeta function C(s,x) (cf. Whittaker & Watson 
1927). Tables and computational relations for C(i,x) have been given by Powell 
(1952). Since for x + 0, [($,x) approaches infinity as 1 / ~ ’ / ~ ,  Z(x) exhibits the same 
behaviour whenever its argument is an integer number. Consequently, the functions 
Qo(x) and Q1 (x) are functions of period 8 and exhibit inverse-square-root singularities 
at x = 2k + 1, k integer. 

Addendum 
In Part 1 of this work (Dillmann 1994a) there is a factor r missing in the argument 

of the Bessel function appearing in the numerator of the infinite series expressions 
in equations (5.3) and (5.9). In both cases, JO(&,) has to be replaced by Jo(&,r). 
Furthermore, ‘period 0’ at the bottom of page 185 (Note on Schlomilch series) should 
be replaced by ‘frequency 0’; and the initial page of Prandtl’s paper in the list of 
references is 599. 
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